Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0281484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36745639

RESUMO

Maize lethal necrosis is a destructive virus disease of maize caused by maize chlorotic mottle virus (MCMV) in combination with a virus in the family Potyviridae. Emergence of MLN is typically associated with the introduction of MCMV or its vectors and understanding its spread through seed is critical for disease management. Previous studies suggest that although MCMV is detected on seed, the seed transmission rate of this virus is low. However, mechanisms influencing its transmission are poorly understood. Elucidating these mechanisms is crucial for informing strategies to prevent spread on contaminated seed. In this study, we evaluated the rate of MCMV seed transmission using seed collected from plants that were artificially inoculated with MCMV isolates from Hawaii and Kenya. Grow-out tests indicated that MCMV transmission through seed was rare, with a rate of 0.004% among the more than 85,000 seed evaluated, despite detection of MCMV at high levels in the seed lots. To understand factors that limit transmission from seed, MCMV distribution in seed tissues was examined using serology and immunolocalization. The virus was present at high levels in maternal tissues, the pericarp and pedicel, but absent from filial endosperm and embryo seed tissues. The ability to transmit MCMV from seed to uninfected plants was tested to evaluate virus viability. Transmission was negatively associated with both seed maturity and moisture content. Transmission of MCMV from infested seed dried to less than 15% moisture was not detected, suggesting proper handling could be important for minimizing spread of MCMV through seed.


Assuntos
Doenças das Plantas , Potyviridae , Tombusviridae , Zea mays , Quênia , Doenças das Plantas/virologia , Zea mays/virologia , Havaí , Sementes/virologia
2.
Mol Plant Pathol ; 24(7): 788-800, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36239302

RESUMO

Recent reverse genetics technologies have enabled genetic manipulation of plant negative-strand RNA virus (NSR) genomes. Here, we report construction of an infectious clone for the maize-infecting Alphanucleorhabdovirus maydis, the first efficient NSR vector for maize. The full-length infectious clone was established using agrobacterium-mediated delivery of full-length maize mosaic virus (MMV) antigenomic RNA and the viral core proteins (nucleoprotein N, phosphoprotein P, and RNA-directed RNA polymerase L) required for viral transcription and replication into Nicotiana benthamiana. Insertion of intron 2 ST-LS1 into the viral L gene increased stability of the infectious clone in Escherichia coli and Agrobacterium tumefaciens. To monitor virus infection in vivo, a green fluorescent protein (GFP) gene was inserted in between the N and P gene junctions to generate recombinant MMV-GFP. Complementary DNA (cDNA) clones of MMV-wild type (WT) and MMV-GFP replicated in single cells of agroinfiltrated N. benthamiana. Uniform systemic infection and high GFP expression were observed in maize inoculated with extracts of the infiltrated N. benthamiana leaves. Insect vectors supported virus infection when inoculated via feeding on infected maize or microinjection. Both MMV-WT and MMV-GFP were efficiently transmitted to maize by planthopper vectors. The GFP reporter gene was stable in the virus genome and expression remained high over three cycles of transmission in plants and insects. The MMV infectious clone will be a versatile tool for expression of proteins of interest in maize and cross-kingdom studies of virus replication in plant and insect hosts.


Assuntos
Hemípteros , Zea mays , Animais , DNA Complementar , Zea mays/genética , Insetos Vetores , Vetores Genéticos
3.
J Econ Entomol ; 115(4): 1059-1068, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35569031

RESUMO

The soybean aphid (Aphis glycines Matsumura) is an economically important invasive pest of soybean. In addition to damage caused by soybean aphid feeding on the phloem sap, this insect also transmits many plant viruses, including soybean mosaic virus (SMV). Previous work has shown that plant viruses can change plant host phenotypes to alter the behavior of their insect vectors to promote virus spread, known as the vector manipulation hypothesis. In this study, we used electropenetography (EPG) to examine the effects of two plant viruses on soybean aphid feeding behavior: SMV, which is transmitted by many aphid species including the soybean aphid, and bean pod mottle virus (BPMV), which is transmitted by chrysomelid and some coccinellid beetles but not aphids. These two viruses often co-occur in soybean production and can act synergistically. Surprisingly, our results showed little to no effect of SMV on soybean aphid feeding behaviors measured by EPG, but profound differences were observed in aphids feeding on BPMV-infected plants. Aphids took longer to find the vascular bundle of BPMV-infected plants, and once found, spent more time entering and conditioning the phloem than ingesting phloem sap. Interestingly, these observed alterations are similar to those of aphids feeding on insect-resistant soybean plants. The cause of these changes in feeding behavior is not known, and how they impact virus transmission and soybean aphid populations in the field will require further study.


Assuntos
Afídeos , Besouros , Fabaceae , Vírus de Plantas , Animais , Comovirus , Comportamento Alimentar , Potyvirus , /genética
4.
Stress Biol ; 2(1): 2, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676518

RESUMO

Agricultural production is hampered by disease, pests, and environmental stresses. To minimize yield loss, it is important to develop crop cultivars with resistance or tolerance to their respective biotic and abiotic constraints. Transformation techniques are not optimized for many species and desirable cultivars may not be amenable to genetic transformation, necessitating inferior cultivar usage and time-consuming introgression through backcrossing to the preferred variety. Overcoming these limitations will greatly facilitate the development of disease, insect, and abiotic stress tolerant crops. One such avenue for rapid crop improvement is the development of viral systems to deliver CRISPR/Cas-based genome editing technology to plants to generate targeted beneficial mutations. Viral delivery of genomic editing constructs can theoretically be applied to span the entire host range of the virus utilized, circumventing the challenges associated with traditional transformation and breeding techniques. Here we explore the types of viruses that have been optimized for CRISPR/Cas9 delivery, the phenotypic outcomes achieved in recent studies, and discuss the future potential of this rapidly advancing technology.

5.
Microbiol Spectr ; 9(3): e0061221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817206

RESUMO

The corn leafhopper (Dalbulus maidis) is an important vector of maize rayado fino virus (MRFV), a positive-strand RNA (+ssRNA) marafivirus which it transmits in a persistent propagative manner. The interaction of D. maidis with MRFV, including infection of the insect and subsequent transmission to new plants, is not well understood at the molecular level. To examine the leafhopper-virus interaction, a D. maidis transcriptome was assembled and differences in transcript abundance between virus-exposed and naive D. maidis were examined at two time points (4 h and 7 days) post exposure to MRFV. The D. maidis transcriptome contained 56,116 transcripts generated from 1,727,369,026 100-nt paired-end reads from whole adult insects. The transcriptome of D. maidis shared highest identity and most orthologs with the leafhopper Graminella nigrifrons (65% of transcripts had matches with E values of <10-5) versus planthoppers Sogatella furcifera (with 23% of transcript matches below the E value cutoff) and Peregrinus maidis (with 21% transcript matches below the E value cutoff), as expected based on taxonomy. D. maidis expressed genes in the Toll, Imd, and Jak/Stat insect immune signaling pathways, RNA interference (RNAi) pathway genes, prophenoloxidase-activating system pathways, and immune recognition protein-encoding genes such as peptidoglycan recognition proteins (PGRPs), antimicrobial peptides, and other effectors. Statistical analysis (performed by R package DESeq2) identified 72 transcripts at 4 h and 67 at 7 days that were significantly responsive to MRFV exposure. Genes expected to be favorable for virus propagation, such as protein synthesis-related genes and genes encoding superoxide dismutase, were significantly upregulated after MRFV exposure. IMPORTANCE The transcriptome of the corn leafhopper, D. maidis, revealed conserved biochemical pathways for immunity and discovered transcripts responsive to MRFV-infected plants at two time points, providing a basis for functional identification of genes that either limit or promote the virus-vector interaction. Compared to other hopper species and the propagative plant viruses they transmit, D. maidis shared 15 responsive transcripts with S. furcifera (to southern rice black-streaked dwarf virus [SRBSDV]), one with G. nigrifrons (to maize fine streak virus [MFSV]), and one with P. maidis (to maize mosaic virus [MMV]), but no virus-responsive transcripts identified were shared among all four hopper vector species.


Assuntos
Hemípteros/genética , Hemípteros/virologia , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/virologia , Tymoviridae/fisiologia , Animais , Hemípteros/imunologia , Interações Hospedeiro-Patógeno , Proteínas de Insetos/imunologia , Insetos Vetores/imunologia , Doenças das Plantas/virologia , Transcriptoma , Tymoviridae/genética , Zea mays/virologia
6.
Plant Dis ; 105(6): 1596-1601, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33320046

RESUMO

Maize chlorotic mottle virus (MCMV) has driven the emergence of maize lethal necrosis worldwide, where it threatens maize production in areas of East Africa, South America, and Asia. It is thought that MCMV transmission through seed may be important for introduction of the virus in new regions. Identification of infested seed lots is critical for preventing the spread of MCMV through seed. Although methods for detecting MCMV in leaf tissue are available, diagnostic methods for its detection in seed lots are lacking. In this study, ELISA, RT-PCR, and RT-qPCR were adapted for detection of MCMV in maize seed. Purified virions of MCMV isolates from Kansas, Mexico, and Kenya were then used to determine the virus detection thresholds for each diagnostic assay. No substantial differences in response were detected among the isolates in any of the three assays. The RT-PCR and a SYBR Green-based RT-qPCR assays were >3,000 times more sensitive than commercial ELISA for MCMV detection. For ELISA using seed extracts, selection of positive and negative controls was critical, most likely because of relatively high backgrounds. Use of seed soak solutions in ELISA detected MCMV with similar sensitivity to seed extracts, produced minimal background, and required substantially less labor. ELISA and RT-PCR were both effective for detecting MCMV in seed lots from Hawaii and Kenya, with ELISA providing a reliable and inexpensive diagnostic assay that could be implemented routinely in seed testing facilities.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Doenças das Plantas , Tombusviridae , Quênia , Sementes
7.
Plant Methods ; 16: 133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33024447

RESUMO

BACKGROUND: The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system has become a powerful tool for functional genomics in plants. The RNA-guided nuclease can be used to not only generate precise genomic mutations, but also to manipulate gene expression when present as a deactivated protein (dCas9). RESULTS: In this study, we describe a vector toolkit for analyzing dCas9-mediated activation (CRISPRa) or inactivation (CRISPRi) of gene expression in maize protoplasts. An improved maize protoplast isolation and transfection method is presented, as well as a description of dCas9 vectors to enhance or repress maize gene expression. CONCLUSIONS: We anticipate that this maize protoplast toolkit will streamline the analysis of gRNA candidates and facilitate genetic studies of important trait genes in this transformation-recalcitrant plant.

8.
Plant Pathol ; 69(3): 585-597, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35874461

RESUMO

Maize lethal necrosis (MLN) is emergent in East Africa, first reported in 2011 in Kenya, and is devastating to maize production in the region. MLN is caused by coinfection of maize with the emergent maize chlorotic mottle virus (MCMV) and any of several maize-infecting potyviruses endemic in East Africa and worldwide. Here, we examined the distribution of MCMV and sugarcane mosaic virus (SCMV), the major viruses contributing to MLN in Rwanda. These and other viruses in maize across Rwanda were further characterized by deep sequencing. When identified, MCMV had high titres and minimal sequence variability, whereas SCMV showed moderate titres and high sequence variability. Deep sequencing also identified maize streak virus and other maize-associated viruses, including a previously described polerovirus, maize yellow mosaic virus, and barley yellow dwarf virus, diverse maize-associated totiviruses, maize-associated pteridovirus, Zea mays chrysovirus 1, and a maize-associated betaflexivirus. Detection of each virus was confirmed in maize samples by reverse transcription polymerase chain reaction.

9.
Annu Rev Virol ; 5(1): 301-322, 2018 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-30059641

RESUMO

Maize lethal necrosis (MLN) is a disease of maize caused by coinfection of maize with maize chlorotic mottle virus (MCMV) and one of several viruses from the Potyviridae, such as sugarcane mosaic virus, maize dwarf mosaic virus, Johnsongrass mosaic virus or wheat streak mosaic virus. The coinfecting viruses act synergistically to result in frequent plant death or severely reduce or negligible yield. Over the past eight years, MLN has emerged in sub-Saharan East Africa, Southeast Asia, and South America, with large impacts on smallholder farmers. Factors associated with MLN emergence include multiple maize crops per year, the presence of maize thrips ( Frankliniella williamsi), and highly susceptible maize crops. Soil and seed transmission of MCMV may also play significant roles in development and perpetuation of MLN epidemics. Containment and control of MLN will likely require a multipronged approach, and more research is needed to identify and develop the best measures.


Assuntos
Doenças das Plantas/virologia , Potyviridae/crescimento & desenvolvimento , Potyviridae/patogenicidade , Tombusviridae/crescimento & desenvolvimento , Tombusviridae/patogenicidade , Zea mays/virologia , África , Sudeste Asiático , América do Sul
10.
Virus Genes ; 54(3): 432-437, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29687187

RESUMO

Since 2011-2012, Maize lethal necrosis (MLN) has emerged in East Africa, causing massive yield loss and propelling research to identify viruses and virus populations present in maize. As expected, next generation sequencing (NGS) has revealed diverse and abundant viruses from the family Potyviridae, primarily sugarcane mosaic virus (SCMV), and maize chlorotic mottle virus (MCMV) (Tombusviridae), which are known to cause MLN by synergistic co-infection. In addition to these expected viruses, we identified a virus in the genus Polerovirus (family Luteoviridae) in 104/172 samples selected for MLN or other potential virus symptoms from Kenya, Uganda, Rwanda, and Tanzania. This polerovirus (MF974579) nucleotide sequence is 97% identical to maize-associated viruses recently reported in China, termed 'maize yellow mosaic virus' (MaYMV) and maize yellow dwarf virus (MaYMV; KU291101, KU291107, MYDV-RMV2; KT992824); and 99% identical to MaYMV (KY684356) infecting sugarcane and itch grass in Nigeria; 83% identical to a barley-associated polerovirus recently identified in Korea (BVG; KT962089); and 79% identical to the U.S. maize-infecting polerovirus maize yellow dwarf virus (MYDV-RMV; KT992824). Nucleotide sequences from ORF0 of 20 individual East African isolates collected from Kenya, Uganda, Rwanda, and Tanzania shared 98% or higher identity, and were detected in 104/172 (60.5%) of samples collected for virus-like symptoms, indicating extensive prevalence but limited diversity of this virus in East Africa. We refer to this virus as "MYDV-like polerovirus" until symptoms of the virus in maize are known.


Assuntos
Luteoviridae/genética , Zea mays/virologia , África Oriental , Variação Genética , Genoma Viral , Luteoviridae/isolamento & purificação , RNA Viral , Análise de Sequência de RNA
11.
Phytopathology ; 108(6): 748-758, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29287150

RESUMO

The recent rapid emergence of maize lethal necrosis (MLN), caused by coinfection of maize with Maize chlorotic mottle virus (MCMV) and a second virus usually from the family Potyviridae, is causing extensive losses for farmers in East Africa, Southeast Asia, and South America. Although the genetic basis of resistance to potyviruses is well understood in maize, little was known about resistance to MCMV. The responses of five maize inbred lines (KS23-5, KS23-6, N211, DR, and Oh1VI) to inoculation with MCMV, Sugarcane mosaic virus, and MLN were characterized. All five lines developed fewer symptoms than susceptible controls after inoculation with MCMV; however, the virus was detected in systemic leaf tissue from each of the lines similarly to susceptible controls, indicating that the lines were tolerant of MCMV rather than resistant to it. Except for KS23-5, the inbred lines also developed fewer symptoms after inoculation with MLN than susceptible controls. To identify genetic loci associated with MCMV tolerance, large F2 or recombinant inbred populations were evaluated for their phenotypic responses to MCMV, and the most resistant and susceptible plants were genotyped by sequencing. One to four quantitative trait loci (QTL) were identified in each tolerant population using recombination frequency and positional mapping strategies. In contrast to previous studies of virus resistance in maize, the chromosomal positions and genetic character of the QTL were unique to each population. The results suggest that different, genotype-specific mechanisms are associated with MCMV tolerance in maize. These results will allow for the development of markers for marker-assisted selection of MCMV- and MLN-tolerant maize hybrids for disease control.


Assuntos
Cromossomos de Plantas/genética , Gammaherpesvirinae , Doenças das Plantas/genética , Doenças das Plantas/virologia , Locos de Características Quantitativas/genética , Zea mays/genética , Mapeamento Cromossômico , Predisposição Genética para Doença , Genótipo
12.
J Econ Entomol ; 111(1): 428-434, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29220502

RESUMO

Halyomorpha halys (Stål; Hemiptera: Pentatomidae), brown marmorated stink bug (BMSB), is a polyphagous nonnative insect first found in the United States in 1996. As of 2017, BMSB has been detected in 43 states and is a severe agricultural pest in mid-Atlantic states. On soybean, Glycine max (L.) Merr (Fabales: Fabaceae), damage from BMSB infestation ranges from puncture marks with seed discoloration and deformities to seed and pod abortion. Host plant resistance has been used for managing pest populations and mitigating soybean yield losses caused by neotropical stink bugs (Eushistus heros, Nezara viridula, and Piezodorus guildinii) in Brazil and on the U.S. Gulf Coast. We evaluated maturity group III plant introductions (PIs) for resistance to BMSB damage. In 2014, field cage choice tests of 106 PIs revealed a range of both BMSB damage incidence and severity. In field choice tests, PIs 085665 and 097139 showed the lowest incidence of BMSB damage and seed weight loss due to BMSB, while PIs 243532, 243540, and 567252 had the highest. In whole plant no-choice tests, PIs 085665 and 097139 also had high levels of resistance. However, PI 085665 had a higher incidence of damage but lower seed weight loss than PI 097139, which may suggest bimodal resistance. Moreover, PIs 085665 and 097139 are from Japan and North Korea, respectively, two geographically isolated countries where BMSB is native. Thus, further characterization of host plant resistance to BMSB in each of these lines may elucidate distinct mechanisms that could be synergistic if stacked in breeding lines.


Assuntos
Antibiose , Herbivoria , Heterópteros/fisiologia , Animais , Heterópteros/crescimento & desenvolvimento , Ninfa/fisiologia , Ohio , /genética
13.
Phytopathology ; 107(10): 1095-1108, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28535127

RESUMO

Maize lethal necrosis (MLN) has emerged as a serious threat to food security in sub-Saharan Africa. MLN is caused by coinfection with two viruses, Maize chlorotic mottle virus and a potyvirus, often Sugarcane mosaic virus. To better understand the dynamics of MLN and to provide insight into disease management, we modeled the spread of the viruses causing MLN within and between growing seasons. The model allows for transmission via vectors, soil, and seed, as well as exogenous sources of infection. Following model parameterization, we predict how management affects disease prevalence and crop performance over multiple seasons. Resource-rich farmers with large holdings can achieve good control by combining clean seed and insect control. However, crop rotation is often required to effect full control. Resource-poor farmers with smaller holdings must rely on rotation and roguing, and achieve more limited control. For both types of farmer, unless management is synchronized over large areas, exogenous sources of infection can thwart control. As well as providing practical guidance, our modeling framework is potentially informative for other cropping systems in which coinfection has devastating effects. Our work also emphasizes how mathematical modeling can inform management of an emerging disease even when epidemiological information remains scanty. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Assuntos
Modelos Teóricos , Doenças das Plantas/prevenção & controle , Potyvirus/isolamento & purificação , Tombusviridae/isolamento & purificação , Zea mays/virologia , Agricultura , Coinfecção , Controle de Insetos , Quênia , Doenças das Plantas/estatística & dados numéricos , Doenças das Plantas/virologia , Sementes/virologia
14.
Plant Dis ; 101(8): 1455-1462, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30678589

RESUMO

Maize lethal necrosis (MLN), a severe virus disease of maize, has emerged in East Africa in recent years with devastating effects on production and food security where maize is a staple subsistence crop. In extensive surveys of MLN-symptomatic plants in East Africa, sequences of Johnsongrass mosaic virus (JGMV) were identified in Uganda, Kenya, Rwanda, and Tanzania. The East African JGMV is distinct from previously reported isolates and infects maize, sorghum, and Johnsongrass but not wheat or oat. This isolate causes MLN in coinfection with Maize chlorotic mottle virus (MCMV), as reported for other potyviruses, and was present in MLN-symptomatic plants in which the major East African potyvirus, Sugarcane mosaic virus (SCMV), was not detected. Virus titers were compared in single and coinfections by quantitative reverse transcription-polymerase chain reaction. MCMV titer increased in coinfected plants whereas SCMV, Maize dwarf mosaic virus, and JGMV titers were unchanged compared with single infections at 11 days postinoculation. Together, these results demonstrate the presence of an East African JGMV that contributes to MLN in the region.


Assuntos
Potyvirus , Zea mays , África Oriental , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase , Potyvirus/genética , Potyvirus/fisiologia , Zea mays/virologia
15.
J Econ Entomol ; 109(1): 426-33, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26578627

RESUMO

Host plant resistance to the soybean aphid, Aphis glycines Matsumura, is an effective means of controlling populations of this introduced pest species in the United States. Rag (Resistance to Aphis glycines) genes identified in soybean germplasm have been incorporated into commercial cultivars, but differential responses by soybean aphid biotypes to the Rag genes have made understanding mechanisms underlying resistance associated with Rag genes increasingly important. We compared the behavior of biotype 2 aphids on the resistant soybean line PI243540, which is a source of Rag2, and the susceptible cultivar Wyandot. Scanning electron microscopy revealed that the abaxial surface of leaves from resistant plants had a higher density of both long and glandulartrichomes, which might repel aphids, on veins. Time-lapse animation also suggested a repellent effect of resistant plants on aphids. However, electropenatography (EPG) indicated that the time to first probe did not differ between aphids feeding on the resistant and susceptible lines. EPG also indicated that fewer aphids feeding on resistant plants reached the phloem, and the time before reaching the phloem was much longer relative to susceptible soybean. For aphids that reached the phloem, there was no difference in either number of feedings or their duration in phloem. However, aphids feeding on resistant soybean had fewer prolonged phases of active salivation (E1) and many more pathway activities and non-probing intervals. Together, the feeding behavior of aphids suggested that Rag2 resistance has strong antixenosis effects, in addition to previously reported antibiosis, and was associated with epidermal and mesophyll tissues.


Assuntos
Antibiose , Afídeos/fisiologia , /fisiologia , Animais , Afídeos/crescimento & desenvolvimento , Comportamento Alimentar , Microscopia Eletrônica de Varredura , Folhas de Planta/ultraestrutura , Gravação em Vídeo
16.
PLoS One ; 10(8): e0134890, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244340

RESUMO

For real-time reverse transcription-PCR (qRT-PCR) in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2) in soybean under biotic stress from Bean pod mottle virus (BPMV), powdery mildew (PMD), soybean aphid (SBA), and two-spotted spider mite (TSSM). BPMV, PMD, SBA, and TSSM are amongst the most common pest problems on soybean in North-Central U.S. and other regions. Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). Reference genes showed variability in their expression as well as stability across various stressors and the best reference genes were stress-dependent. ABCT and FBOX were found to be the most stable in soybean under both BPMV and SBA stress but these genes had only minimal to moderate stability during PMD and TSSM stress. Expression of TUA4 and CYP was found to be most stable during PMD stress; TUB4 and TUA4 were stable under TSSM stress. Under various biotic stresses on soybean analyzed, GPDH expression was found to be consistently unstable. For all biotic stressors on soybean, we obtained pairwise variation (V2/3) values less than 0.15 which suggested that combined use of the two most stable reference genes would be sufficient for normalization. Further, we demonstrated the utility of normalizing the qRT-PCR data for target genes using the most stable reference genes validated in current study. Following of the recommendations from our current study will enable an accurate and reliable normalization of qRT-PCR data in soybean under biotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Algoritmos , Animais , Afídeos/fisiologia , Ascomicetos/fisiologia , Comovirus/fisiologia , Biologia Computacional/métodos , Interações Hospedeiro-Patógeno , Ácaros/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Padrões de Referência , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Software , /virologia
17.
Insect Mol Biol ; 24(4): 422-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25845267

RESUMO

Vertically transmitted bacterial symbionts are common in arthropods. Aphids undergo an obligate symbiosis with Buchnera aphidicola, which provides essential amino acids to its host and contributes directly to nymph growth and reproduction. We previously found that newly adult Aphis glycines feeding on soybean infected with the beetle-transmitted Bean pod mottle virus (BPMV) had significantly reduced fecundity. We hypothesized that the reduced fecundity was attributable to detrimental impacts of the virus on the aphid microbiome, namely Buchnera. To test this, mRNA sequencing and quantitative real-time PCR were used to assay Buchnera transcript abundance and titre in A. glycines feeding on Soybean mosaic virus-infected, BPMV-infected, and healthy soybean for up to 14 days. Our results indicated that Buchnera density was lower and ultimately suppressed in aphids feeding on virus-infected soybean. While the decreased Buchnera titre may be associated with reduced aphid fecundity, additional mechanisms are probably involved. The present report begins to describe how interactions among insects, plants, and plant pathogens influence endosymbiont population dynamics.


Assuntos
Afídeos/microbiologia , Buchnera/virologia , Comovirus/fisiologia , Vírus do Mosaico , Animais , Buchnera/genética , Fertilidade , Genes Bacterianos , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Dinâmica Populacional , Simbiose , Transcriptoma
18.
Phytopathology ; 105(7): 956-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25822185

RESUMO

In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on maize in Kenya. The disease has since been confirmed in Rwanda and the Democratic Republic of Congo, and similar symptoms have been reported in Tanzania, Uganda, South Sudan, and Ethiopia. In 2012, yield losses of up to 90% resulted in an estimated grain loss of 126,000 metric tons valued at $52 million in Kenya alone. In eastern Africa, MLN was found to result from coinfection of maize with Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV), although MCMV alone appears to cause significant crop losses. We summarize here the results of collaborative research undertaken to understand the biology and epidemiology of MLN in East Africa and to develop disease management strategies, including identification of MLN-tolerant maize germplasm. We discuss recent progress, identify major issues requiring further research, and discuss the possible next steps for effective management of MLN.


Assuntos
Potyviridae/fisiologia , Tombusviridae/fisiologia , Zea mays/virologia , África Subsaariana , Abastecimento de Alimentos , Interações Hospedeiro-Patógeno , Controle de Pragas , Doenças das Plantas/virologia
19.
PLoS One ; 9(11): e113529, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25420026

RESUMO

BACKGROUND: Most plant-infecting rhabdoviruses are transmitted by one or a few closely related insect species. Additionally, intraspecific differences in transmission efficacy often exist among races/biotypes within vector species and among strains within a virus species. The black-faced leafhopper, Graminella nigrifrons, is the only known vector of the persistent propagative rhabdovirus Maize fine streak virus (MFSV). Only a small percentage of leafhoppers are capable of transmitting the virus, although the mechanisms underlying vector competence are not well understood. METHODOLOGY: RNA-Seq was carried out to explore transcript expression changes and sequence variation in G. nigrifrons and MFSV that may be associated with the ability of the vector to acquire and transmit the virus. RT-qPCR assays were used to validate differential transcript accumulation. RESULTS/SIGNIFICANCE: Feeding on MFSV-infected maize elicited a considerable transcriptional response in G. nigrifrons, with increased expression of cytoskeleton organization and immunity transcripts in infected leafhoppers. Differences between leafhoppers capable of transmitting MFSV, relative to non-transmitting but infected leafhoppers were more limited, which may reflect difficulties discerning between the two groups and/or the likelihood that the transmitter phenotype results from one or a few genetic differences. The ability of infected leafhoppers to transmit MFSV did not appear associated with virus transcript accumulation in the infected leafhoppers or sequence polymorphisms in the viral genome. However, the non-structural MFSV 3 gene was expressed at unexpectedly high levels in infected leafhoppers, suggesting it plays an active role in the infection of the insect host. The results of this study begin to define the functional roles of specific G. nigrifrons and MFSV genes in the viral transmission process.


Assuntos
Perfilação da Expressão Gênica/métodos , Hemípteros/genética , Insetos Vetores/genética , Rhabdoviridae/genética , Animais , Comportamento Alimentar , Variação Genética , Hemípteros/fisiologia , Hemípteros/virologia , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno/genética , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Polimorfismo Genético , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhabdoviridae/fisiologia , Zea mays/parasitologia , Zea mays/virologia
20.
Adv Virus Res ; 90: 391-429, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25410107

RESUMO

Diseases caused by viruses are found throughout the maize-growing regions of the world and can cause significant losses for producers. In this review, virus diseases of maize and the pathogens that cause them are discussed. Factors leading to the spread of disease and measures for disease control are reviewed, as is our current knowledge of the genetics of virus resistance in this important crop.


Assuntos
Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Zea mays/virologia , Agricultura/métodos , Resistência à Doença , Controle Biológico de Vetores/métodos , Vírus de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Zea mays/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...